
www.454.com

454 Sequencing The Road to the Future

James R. Knight, PhD 05-Jun-2012

IMPORTANT NOTICE Intended Use

Unless explicitly stated otherwise, all Roche Applied Science and 454 Life Sciences products and services referenced in this presentation/document are intended for the following use:

For life science research only.

Not for use in diagnostic procedures.

454 Sequencing Developments Driving innovation across the product portfolio

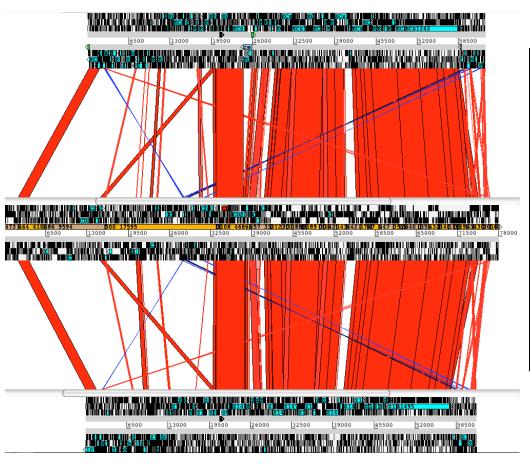
Topic	Summary	
1 GS Junior System	 Extend read lengths for both amplicon and shotgun sequencing Automation for upfront workflow (lib prep & emPCR) 	
2 GS FLX+ System	Robustness and instrument improvementsOptimize for long read sequencing	
3 Assays	- Launch virology assays for HIV/HCV/HBV resistance typing	
4 Future Technologies	Collaboration with DNA Electronics for development of semiconductor sequencing system Collaboration with IBM Research for innovative nanopore sequencing technology	

Recent Developments

Current Developments

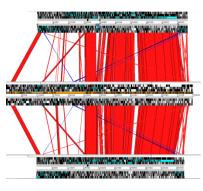
Future Developments*

* The following slides contains products in development, not available for sale

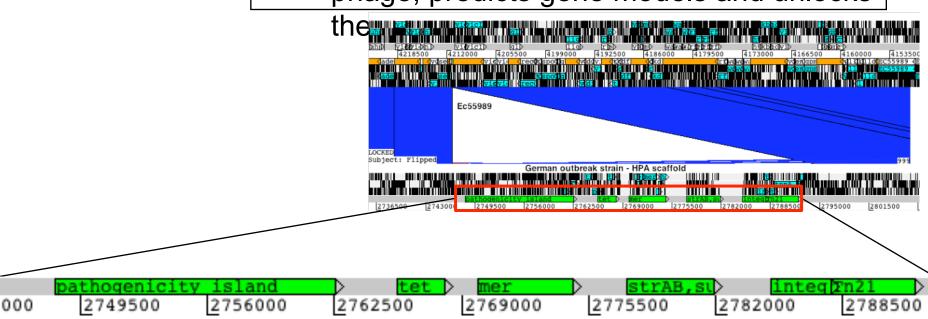


Recent Developments

Assembly of *E. coli* O104 Outbreak Genome Day-by-day record on BacPathGenomics blog

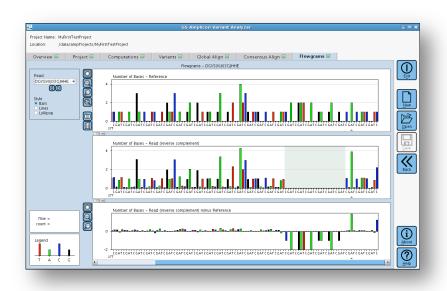


- June 9, 2011
 - Ion Torrent and Illumina data assemblies
 - ~450 contigs/scaffolds
 - Downstream analysis stuck at comparative genomes with known


Source: Google search "bacpathgenomics june page 2" http://bacpathgenomics.wordpress.com/2011/06/page/2/

Assembly of *E. coli* O104 Outbreak Genome Day-by-day record on BacPathGenomics blog

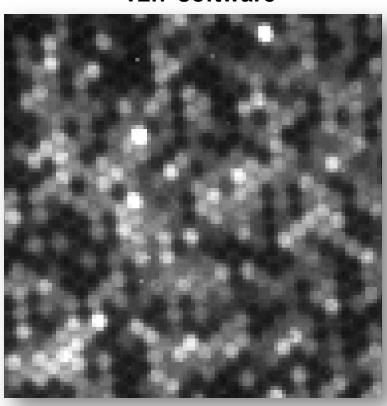
- June 10, 2011
 - HPA assembly of 454 sequence, 13 scaffolds
 - Downstream analysis identifies inserted phage, predicts gene models and unlocks



Source: Google search "bacpathgenomics june page 2" http://bacpathgenomics.wordpress.com/2011/06/page/2/

Released – GS Junior Software v2.7 What's New?

- Software upgrade for improved sequencing robustness
- Functionality improvements to:
 - GS Amplicon Variant Analyzer (AVA)
 - GS De Novo Assembler
 - GS Reference Mapper
- Highlights include:
 - Detection of small insertions and deletions (1-2bp) in AVA
 - Simple de-multiplexing capabilities in Reference Mapper
 - New heterozygote function in Assembler



Screenshot of GS Amplicon Variant Analyzer software

Released – GS Junior Software v2.7 Software upgrade – better resolution of wells

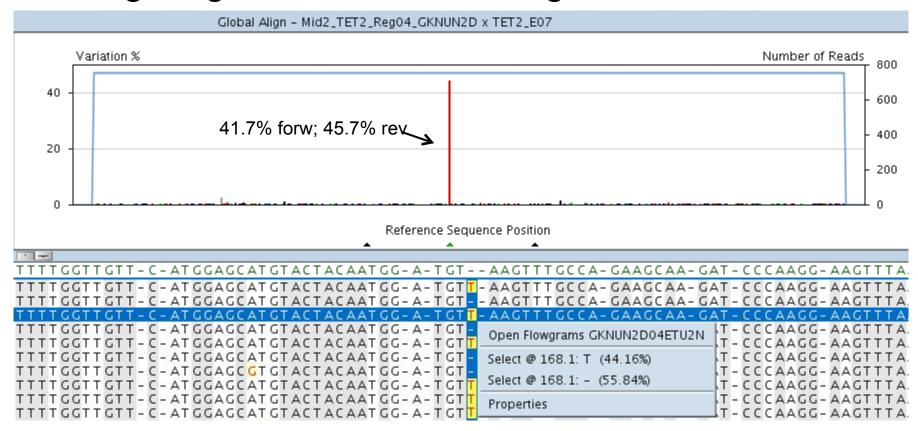
v2.5 software

v2.7 software

Improved resolution of wells results in better quality, more robust sequencing runs

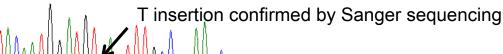
No hardware changes required

454


Released – GS Junior Software v2.7 Improved Assembly Software

- Scaffold gap filling with –scaffold and – het
 - scaffold enables repeat region gap filling
 - het enables filling of local heterozygocity for diploid genomes
- Example 35MB fungal genome

scaffoldMetrics	v2.6	v2.7_1454
numberOfScaffolds	14	13
number Of Bases	34,250,334	34,229,926
avgScaffoldSize	2,446,452	2,633,071
N50ScaffoldSize	3,438,441	3,436,801
largestScaffoldSize	3,865,581	4,485,751
numberOfScaffoldContigs	220	127
numberOfScaffoldContigBases	34,173,244	34,192,993
avgScaffoldContigSize	155,332	269,236
N50ScaffoldContigSize	395555, 27	639707, 18
largestScaffoldContigSize	1,148,004	2,011,999
largeContigMetrics		
numberOfContigs	237	191
number Of Bases	34,184,671	34,205,596
avgContigSize	144,239	179,086
N50ContigSize	395,555	502,585
largestContigSize	1,148,004	1,161,175
allContigMetrics		
numberOfContigs	470	431
numberOfBases	34,237,417	34,261,486



Released – GS Junior Software v2.7 Finding single base indels using AVA

This mutation is the only real mutation in the 3 sample set not auto-detected by AVA v2.6 or earlier

TAGART G GAT GTAGART TT G C CGA AGAR

GS GType Assays for 454 Sequencing Systems Available Now!

GS GType HLA MR & HR Primer Sets

- Sequence-based assays for high- and medium-resolution HLA typing
- For use on either the GS Junior or GS FLX System

GS GType Leukemia Primer Sets (TET2/CBL/KRAS & RUNX1)

- Sequence-based assays for leukemia research
- For use on either the GS Junior or GS FLX System

Recent Developments

Current Developments

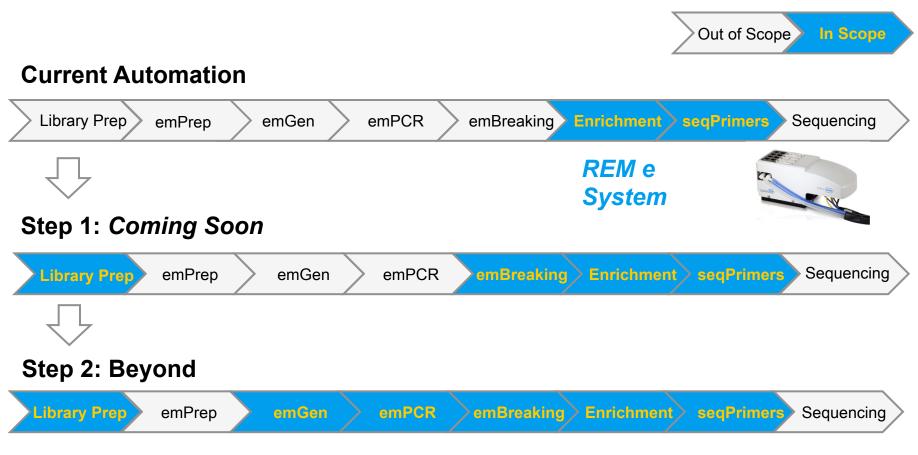
Future Developments*

* The following slides contains products in development, not available for sale

GS FLX+ System - Current Developments Software and instrument improvements

- Improved upgrade procedure
- Reagent and instrument hardware improvements
 - Designed to increase robustness and reduce run-to-run variability
 - Rolling-out continuously as they become available
- Coming soon! Software version 2.8
 - v2.7 functionality for FLX+ customers
 - Additional improvements to sequencing performance, particularly read length

Recent Developments


Current Developments

Future Developments*

* The following slides contains products in development, not available for sale

GS Junior Workflow – Future Developments Integrated emPCR automation system

Integrated emPCR automation system

Collaboration with DNA Electronics ISFET Sequencing Technology

Description

- Collaboration to develop semiconductor-based sequencing system
- License DNAe's ISFET (ion-sensitive, field effect transistor) sequencing technology
- Enables detection of pH changes from nucleotide incorporation on semiconductor chip
- Builds on current 454 Sequencing portfolio by moving from optical to electrochemical detection
- Target applications in amplicon assays, gene panels, exome sequencing, RNA-seq, and whole genome sequencing

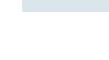
Collaboration with DNAe: Technology ISFETs enable label free pH Sensing on a Semiconductor Chip

Technology Concept Micro well **Array Packaged** Integrated Circuit H⁺ ions detected

Description

- High-density array of micro-wells on an integrated circuit. Each well holds a unique DNA template bead.
- Beneath each well is an ion sensitive transistor.
- The chip is sequentially flooded with one nucleotide after another. If the nucleotide that floods the chip is not a match to the DNA template, no change will be detected and no base will be called.
- If a nucleotide is incorporated into the growing strand complementary to the DNA template, a H⁺ ion will be released which can be detected by the ion sensitive transistor.

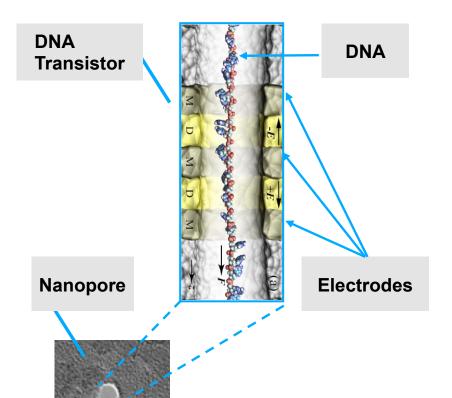
SEQUENCING


Collaboration with IBM Nanopore Sequencing Technology

Description

- Collaboration with IBM Research to develop nanopore-based sequencing system
- Technology based on IBM DNA Transistor concept
- Leverage IBM as a world leader in microelectronics, information technology and computational biology
- Access to world class prototype facilities for semi-conductor manufacturing and nanofabrication

Center



Collaboration with IBM: Technology Concept Combining a nanopore transistor with a nucleotide sensing technology to identify

DNA bases Technology Concept

min

Description

- IBM DNA transistor concept series of alternating electrodes with insulator material in between, built into a silicon membrane that contains the nanopores.
- By changing the voltage applied to the electrodes, ssDNA can be made to move through the nanopore one base at a time (electrophoretic ratchet) in any direction.
- A nucleotide sensing methodology (recognition tunneling from ASU) is coupled to the DNA transistor to identify the bases in the DNA strand as it passes through the pore.

Watch the technology video at: http://www.youtube.com/watch?v=wvclP3GySUY

454 Sequencing Developments Summary

Roche's Commitment to Sequencing

Enhance – GS Junior & GS FLX+ Systems

Develop - Assays

ISFET Technology

Innovate – Solid State Nanopore

Disclaimer:

For life science research only. Not for use in diagnostic procedures.

Trademarks:

454, 454 SEQUENCING, 454 LIFE SCIENCES, EMPCR, GS FLX, GS JUNIOR, GS FLX TITANIUM, GS GTYPE, PTP, REM and PICOTITERPLATE are trademarks of Roche.

All other product names and trademarks are the property of their respective owners.

